↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
S2_IN(plus(A, B), C) → U61(A, B, C, isNat_in(A))
S2_IN(plus(A, B), C) → ISNAT_IN(A)
ISNAT_IN(s(X)) → U91(X, isNat_in(X))
ISNAT_IN(s(X)) → ISNAT_IN(X)
U61(A, B, C, isNat_out(A)) → U71(A, B, C, isNat_in(B))
U61(A, B, C, isNat_out(A)) → ISNAT_IN(B)
U71(A, B, C, isNat_out(B)) → U81(A, B, C, add_in(A, B, C))
U71(A, B, C, isNat_out(B)) → ADD_IN(A, B, C)
ADD_IN(s(X), Y, s(Z)) → U101(X, Y, Z, add_in(X, Y, Z))
ADD_IN(s(X), Y, s(Z)) → ADD_IN(X, Y, Z)
S2_IN(plus(X, Y), Z) → U31(X, Y, Z, s2_in(X, A))
S2_IN(plus(X, Y), Z) → S2_IN(X, A)
S2_IN(plus(A, B), C) → U21(A, B, C, s2_in(plus(B, A), C))
S2_IN(plus(A, B), C) → S2_IN(plus(B, A), C)
S2_IN(plus(A, plus(B, C)), D) → U11(A, B, C, D, s2_in(plus(plus(A, B), C), D))
S2_IN(plus(A, plus(B, C)), D) → S2_IN(plus(plus(A, B), C), D)
U31(X, Y, Z, s2_out(X, A)) → U41(X, Y, Z, A, s2_in(Y, B))
U31(X, Y, Z, s2_out(X, A)) → S2_IN(Y, B)
U41(X, Y, Z, A, s2_out(Y, B)) → U51(X, Y, Z, s2_in(plus(A, B), Z))
U41(X, Y, Z, A, s2_out(Y, B)) → S2_IN(plus(A, B), Z)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
S2_IN(plus(A, B), C) → U61(A, B, C, isNat_in(A))
S2_IN(plus(A, B), C) → ISNAT_IN(A)
ISNAT_IN(s(X)) → U91(X, isNat_in(X))
ISNAT_IN(s(X)) → ISNAT_IN(X)
U61(A, B, C, isNat_out(A)) → U71(A, B, C, isNat_in(B))
U61(A, B, C, isNat_out(A)) → ISNAT_IN(B)
U71(A, B, C, isNat_out(B)) → U81(A, B, C, add_in(A, B, C))
U71(A, B, C, isNat_out(B)) → ADD_IN(A, B, C)
ADD_IN(s(X), Y, s(Z)) → U101(X, Y, Z, add_in(X, Y, Z))
ADD_IN(s(X), Y, s(Z)) → ADD_IN(X, Y, Z)
S2_IN(plus(X, Y), Z) → U31(X, Y, Z, s2_in(X, A))
S2_IN(plus(X, Y), Z) → S2_IN(X, A)
S2_IN(plus(A, B), C) → U21(A, B, C, s2_in(plus(B, A), C))
S2_IN(plus(A, B), C) → S2_IN(plus(B, A), C)
S2_IN(plus(A, plus(B, C)), D) → U11(A, B, C, D, s2_in(plus(plus(A, B), C), D))
S2_IN(plus(A, plus(B, C)), D) → S2_IN(plus(plus(A, B), C), D)
U31(X, Y, Z, s2_out(X, A)) → U41(X, Y, Z, A, s2_in(Y, B))
U31(X, Y, Z, s2_out(X, A)) → S2_IN(Y, B)
U41(X, Y, Z, A, s2_out(Y, B)) → U51(X, Y, Z, s2_in(plus(A, B), Z))
U41(X, Y, Z, A, s2_out(Y, B)) → S2_IN(plus(A, B), Z)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ADD_IN(s(X), Y, s(Z)) → ADD_IN(X, Y, Z)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ADD_IN(s(X), Y, s(Z)) → ADD_IN(X, Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ADD_IN(s(X), Y) → ADD_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
ISNAT_IN(s(X)) → ISNAT_IN(X)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
ISNAT_IN(s(X)) → ISNAT_IN(X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
ISNAT_IN(s(X)) → ISNAT_IN(X)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
U31(X, Y, Z, s2_out(X, A)) → S2_IN(Y, B)
S2_IN(plus(X, Y), Z) → U31(X, Y, Z, s2_in(X, A))
U41(X, Y, Z, A, s2_out(Y, B)) → S2_IN(plus(A, B), Z)
S2_IN(plus(A, B), C) → S2_IN(plus(B, A), C)
U31(X, Y, Z, s2_out(X, A)) → U41(X, Y, Z, A, s2_in(Y, B))
S2_IN(plus(A, plus(B, C)), D) → S2_IN(plus(plus(A, B), C), D)
S2_IN(plus(X, Y), Z) → S2_IN(X, A)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ PrologToPiTRSProof
U31(Y, s2_out(A)) → S2_IN(Y)
U41(A, s2_out(B)) → S2_IN(plus(A, B))
U31(Y, s2_out(A)) → U41(A, s2_in(Y))
S2_IN(plus(X, Y)) → U31(Y, s2_in(X))
S2_IN(plus(X, Y)) → S2_IN(X)
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
isNat_in(0) → isNat_out
isNat_in(s(X)) → U9(isNat_in(X))
U9(isNat_out) → isNat_out
U6(A, B, isNat_out) → U7(A, B, isNat_in(B))
U7(A, B, isNat_out) → U8(add_in(A, B))
add_in(0, X) → add_out(X)
add_in(s(X), Y) → U10(add_in(X, Y))
U10(add_out(Z)) → add_out(s(Z))
U8(add_out(C)) → s2_out(C)
s2_in(plus(X, Y)) → U3(Y, s2_in(X))
s2_in(plus(X, 0)) → s2_out(X)
s2_in(plus(A, B)) → U2(s2_in(plus(B, A)))
s2_in(plus(A, plus(B, C))) → U1(s2_in(plus(plus(A, B), C)))
U1(s2_out(D)) → s2_out(D)
U2(s2_out(C)) → s2_out(C)
U3(Y, s2_out(A)) → U4(A, s2_in(Y))
U4(A, s2_out(B)) → U5(s2_in(plus(A, B)))
U5(s2_out(Z)) → s2_out(Z)
s2_in(x0)
isNat_in(x0)
U9(x0)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0)
U8(x0)
U1(x0)
U2(x0)
U3(x0, x1)
U4(x0, x1)
U5(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U31(Y, s2_out(A)) → S2_IN(Y)
S2_IN(plus(X, Y)) → S2_IN(X)
Used ordering: Polynomial interpretation [25]:
U41(A, s2_out(B)) → S2_IN(plus(A, B))
U31(Y, s2_out(A)) → U41(A, s2_in(Y))
S2_IN(plus(X, Y)) → U31(Y, s2_in(X))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
POL(0) = 0
POL(S2_IN(x1)) = x1
POL(U1(x1)) = x1
POL(U10(x1)) = x1
POL(U2(x1)) = x1
POL(U3(x1, x2)) = 1 + x1 + x2
POL(U31(x1, x2)) = 1 + x1 + x2
POL(U4(x1, x2)) = 1 + x1 + x2
POL(U41(x1, x2)) = 1 + x1 + x2
POL(U5(x1)) = x1
POL(U6(x1, x2, x3)) = x1 + x2
POL(U7(x1, x2, x3)) = x2
POL(U8(x1)) = x1
POL(U9(x1)) = 1
POL(add_in(x1, x2)) = x2
POL(add_out(x1)) = x1
POL(isNat_in(x1)) = 1 + x1
POL(isNat_out) = 0
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(s2_in(x1)) = x1
POL(s2_out(x1)) = x1
s2_in(plus(X, Y)) → U3(Y, s2_in(X))
U7(A, B, isNat_out) → U8(add_in(A, B))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
U4(A, s2_out(B)) → U5(s2_in(plus(A, B)))
s2_in(plus(A, plus(B, C))) → U1(s2_in(plus(plus(A, B), C)))
U8(add_out(C)) → s2_out(C)
U6(A, B, isNat_out) → U7(A, B, isNat_in(B))
U10(add_out(Z)) → add_out(s(Z))
U5(s2_out(Z)) → s2_out(Z)
U1(s2_out(D)) → s2_out(D)
U2(s2_out(C)) → s2_out(C)
add_in(s(X), Y) → U10(add_in(X, Y))
s2_in(plus(X, 0)) → s2_out(X)
U3(Y, s2_out(A)) → U4(A, s2_in(Y))
add_in(0, X) → add_out(X)
s2_in(plus(A, B)) → U2(s2_in(plus(B, A)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ PrologToPiTRSProof
U41(A, s2_out(B)) → S2_IN(plus(A, B))
S2_IN(plus(X, Y)) → U31(Y, s2_in(X))
U31(Y, s2_out(A)) → U41(A, s2_in(Y))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
isNat_in(0) → isNat_out
isNat_in(s(X)) → U9(isNat_in(X))
U9(isNat_out) → isNat_out
U6(A, B, isNat_out) → U7(A, B, isNat_in(B))
U7(A, B, isNat_out) → U8(add_in(A, B))
add_in(0, X) → add_out(X)
add_in(s(X), Y) → U10(add_in(X, Y))
U10(add_out(Z)) → add_out(s(Z))
U8(add_out(C)) → s2_out(C)
s2_in(plus(X, Y)) → U3(Y, s2_in(X))
s2_in(plus(X, 0)) → s2_out(X)
s2_in(plus(A, B)) → U2(s2_in(plus(B, A)))
s2_in(plus(A, plus(B, C))) → U1(s2_in(plus(plus(A, B), C)))
U1(s2_out(D)) → s2_out(D)
U2(s2_out(C)) → s2_out(C)
U3(Y, s2_out(A)) → U4(A, s2_in(Y))
U4(A, s2_out(B)) → U5(s2_in(plus(A, B)))
U5(s2_out(Z)) → s2_out(Z)
s2_in(x0)
isNat_in(x0)
U9(x0)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0)
U8(x0)
U1(x0)
U2(x0)
U3(x0, x1)
U4(x0, x1)
U5(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U41(A, s2_out(B)) → S2_IN(plus(A, B))
U31(Y, s2_out(A)) → U41(A, s2_in(Y))
Used ordering: Polynomial interpretation [25]:
S2_IN(plus(X, Y)) → U31(Y, s2_in(X))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
POL(0) = 1
POL(S2_IN(x1)) = 1 + x1
POL(U1(x1)) = x1
POL(U10(x1)) = 1 + x1
POL(U2(x1)) = x1
POL(U3(x1, x2)) = x1 + x2
POL(U31(x1, x2)) = 1 + x1 + x2
POL(U4(x1, x2)) = 1 + x1 + x2
POL(U41(x1, x2)) = 1 + x1 + x2
POL(U5(x1)) = 1 + x1
POL(U6(x1, x2, x3)) = x1 + x2
POL(U7(x1, x2, x3)) = x1 + x2
POL(U8(x1)) = x1
POL(U9(x1)) = 1
POL(add_in(x1, x2)) = x1 + x2
POL(add_out(x1)) = 1 + x1
POL(isNat_in(x1)) = x1
POL(isNat_out) = 0
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
POL(s2_in(x1)) = x1
POL(s2_out(x1)) = 1 + x1
s2_in(plus(X, Y)) → U3(Y, s2_in(X))
U7(A, B, isNat_out) → U8(add_in(A, B))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
U4(A, s2_out(B)) → U5(s2_in(plus(A, B)))
s2_in(plus(A, plus(B, C))) → U1(s2_in(plus(plus(A, B), C)))
U8(add_out(C)) → s2_out(C)
U6(A, B, isNat_out) → U7(A, B, isNat_in(B))
U10(add_out(Z)) → add_out(s(Z))
U5(s2_out(Z)) → s2_out(Z)
U1(s2_out(D)) → s2_out(D)
U2(s2_out(C)) → s2_out(C)
add_in(s(X), Y) → U10(add_in(X, Y))
s2_in(plus(X, 0)) → s2_out(X)
U3(Y, s2_out(A)) → U4(A, s2_in(Y))
add_in(0, X) → add_out(X)
s2_in(plus(A, B)) → U2(s2_in(plus(B, A)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
S2_IN(plus(X, Y)) → U31(Y, s2_in(X))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
isNat_in(0) → isNat_out
isNat_in(s(X)) → U9(isNat_in(X))
U9(isNat_out) → isNat_out
U6(A, B, isNat_out) → U7(A, B, isNat_in(B))
U7(A, B, isNat_out) → U8(add_in(A, B))
add_in(0, X) → add_out(X)
add_in(s(X), Y) → U10(add_in(X, Y))
U10(add_out(Z)) → add_out(s(Z))
U8(add_out(C)) → s2_out(C)
s2_in(plus(X, Y)) → U3(Y, s2_in(X))
s2_in(plus(X, 0)) → s2_out(X)
s2_in(plus(A, B)) → U2(s2_in(plus(B, A)))
s2_in(plus(A, plus(B, C))) → U1(s2_in(plus(plus(A, B), C)))
U1(s2_out(D)) → s2_out(D)
U2(s2_out(C)) → s2_out(C)
U3(Y, s2_out(A)) → U4(A, s2_in(Y))
U4(A, s2_out(B)) → U5(s2_in(plus(A, B)))
U5(s2_out(Z)) → s2_out(Z)
s2_in(x0)
isNat_in(x0)
U9(x0)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0)
U8(x0)
U1(x0)
U2(x0)
U3(x0, x1)
U4(x0, x1)
U5(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
isNat_in(0) → isNat_out
isNat_in(s(X)) → U9(isNat_in(X))
U9(isNat_out) → isNat_out
U6(A, B, isNat_out) → U7(A, B, isNat_in(B))
U7(A, B, isNat_out) → U8(add_in(A, B))
add_in(0, X) → add_out(X)
add_in(s(X), Y) → U10(add_in(X, Y))
U10(add_out(Z)) → add_out(s(Z))
U8(add_out(C)) → s2_out(C)
s2_in(plus(X, Y)) → U3(Y, s2_in(X))
s2_in(plus(X, 0)) → s2_out(X)
s2_in(plus(A, B)) → U2(s2_in(plus(B, A)))
s2_in(plus(A, plus(B, C))) → U1(s2_in(plus(plus(A, B), C)))
U1(s2_out(D)) → s2_out(D)
U2(s2_out(C)) → s2_out(C)
U3(Y, s2_out(A)) → U4(A, s2_in(Y))
U4(A, s2_out(B)) → U5(s2_in(plus(A, B)))
U5(s2_out(Z)) → s2_out(Z)
s2_in(x0)
isNat_in(x0)
U9(x0)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0)
U8(x0)
U1(x0)
U2(x0)
U3(x0, x1)
U4(x0, x1)
U5(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ PrologToPiTRSProof
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(x0)
isNat_in(x0)
U9(x0)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0)
U8(x0)
U1(x0)
U2(x0)
U3(x0, x1)
U4(x0, x1)
U5(x0)
s2_in(x0)
isNat_in(x0)
U9(x0)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0)
U8(x0)
U1(x0)
U2(x0)
U3(x0, x1)
U4(x0, x1)
U5(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
S2_IN(plus(A, B), C) → U61(A, B, C, isNat_in(A))
S2_IN(plus(A, B), C) → ISNAT_IN(A)
ISNAT_IN(s(X)) → U91(X, isNat_in(X))
ISNAT_IN(s(X)) → ISNAT_IN(X)
U61(A, B, C, isNat_out(A)) → U71(A, B, C, isNat_in(B))
U61(A, B, C, isNat_out(A)) → ISNAT_IN(B)
U71(A, B, C, isNat_out(B)) → U81(A, B, C, add_in(A, B, C))
U71(A, B, C, isNat_out(B)) → ADD_IN(A, B, C)
ADD_IN(s(X), Y, s(Z)) → U101(X, Y, Z, add_in(X, Y, Z))
ADD_IN(s(X), Y, s(Z)) → ADD_IN(X, Y, Z)
S2_IN(plus(X, Y), Z) → U31(X, Y, Z, s2_in(X, A))
S2_IN(plus(X, Y), Z) → S2_IN(X, A)
S2_IN(plus(A, B), C) → U21(A, B, C, s2_in(plus(B, A), C))
S2_IN(plus(A, B), C) → S2_IN(plus(B, A), C)
S2_IN(plus(A, plus(B, C)), D) → U11(A, B, C, D, s2_in(plus(plus(A, B), C), D))
S2_IN(plus(A, plus(B, C)), D) → S2_IN(plus(plus(A, B), C), D)
U31(X, Y, Z, s2_out(X, A)) → U41(X, Y, Z, A, s2_in(Y, B))
U31(X, Y, Z, s2_out(X, A)) → S2_IN(Y, B)
U41(X, Y, Z, A, s2_out(Y, B)) → U51(X, Y, Z, s2_in(plus(A, B), Z))
U41(X, Y, Z, A, s2_out(Y, B)) → S2_IN(plus(A, B), Z)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
S2_IN(plus(A, B), C) → U61(A, B, C, isNat_in(A))
S2_IN(plus(A, B), C) → ISNAT_IN(A)
ISNAT_IN(s(X)) → U91(X, isNat_in(X))
ISNAT_IN(s(X)) → ISNAT_IN(X)
U61(A, B, C, isNat_out(A)) → U71(A, B, C, isNat_in(B))
U61(A, B, C, isNat_out(A)) → ISNAT_IN(B)
U71(A, B, C, isNat_out(B)) → U81(A, B, C, add_in(A, B, C))
U71(A, B, C, isNat_out(B)) → ADD_IN(A, B, C)
ADD_IN(s(X), Y, s(Z)) → U101(X, Y, Z, add_in(X, Y, Z))
ADD_IN(s(X), Y, s(Z)) → ADD_IN(X, Y, Z)
S2_IN(plus(X, Y), Z) → U31(X, Y, Z, s2_in(X, A))
S2_IN(plus(X, Y), Z) → S2_IN(X, A)
S2_IN(plus(A, B), C) → U21(A, B, C, s2_in(plus(B, A), C))
S2_IN(plus(A, B), C) → S2_IN(plus(B, A), C)
S2_IN(plus(A, plus(B, C)), D) → U11(A, B, C, D, s2_in(plus(plus(A, B), C), D))
S2_IN(plus(A, plus(B, C)), D) → S2_IN(plus(plus(A, B), C), D)
U31(X, Y, Z, s2_out(X, A)) → U41(X, Y, Z, A, s2_in(Y, B))
U31(X, Y, Z, s2_out(X, A)) → S2_IN(Y, B)
U41(X, Y, Z, A, s2_out(Y, B)) → U51(X, Y, Z, s2_in(plus(A, B), Z))
U41(X, Y, Z, A, s2_out(Y, B)) → S2_IN(plus(A, B), Z)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
ADD_IN(s(X), Y, s(Z)) → ADD_IN(X, Y, Z)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
ADD_IN(s(X), Y, s(Z)) → ADD_IN(X, Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
ADD_IN(s(X), Y) → ADD_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
ISNAT_IN(s(X)) → ISNAT_IN(X)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
ISNAT_IN(s(X)) → ISNAT_IN(X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
ISNAT_IN(s(X)) → ISNAT_IN(X)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
U31(X, Y, Z, s2_out(X, A)) → S2_IN(Y, B)
S2_IN(plus(X, Y), Z) → U31(X, Y, Z, s2_in(X, A))
U41(X, Y, Z, A, s2_out(Y, B)) → S2_IN(plus(A, B), Z)
S2_IN(plus(A, B), C) → S2_IN(plus(B, A), C)
U31(X, Y, Z, s2_out(X, A)) → U41(X, Y, Z, A, s2_in(Y, B))
S2_IN(plus(A, plus(B, C)), D) → S2_IN(plus(plus(A, B), C), D)
S2_IN(plus(X, Y), Z) → S2_IN(X, A)
s2_in(plus(A, B), C) → U6(A, B, C, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, C, isNat_out(A)) → U7(A, B, C, isNat_in(B))
U7(A, B, C, isNat_out(B)) → U8(A, B, C, add_in(A, B, C))
add_in(0, X, X) → add_out(0, X, X)
add_in(s(X), Y, s(Z)) → U10(X, Y, Z, add_in(X, Y, Z))
U10(X, Y, Z, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, C, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y), Z) → U3(X, Y, Z, s2_in(X, A))
s2_in(plus(X, 0), X) → s2_out(plus(X, 0), X)
s2_in(plus(A, B), C) → U2(A, B, C, s2_in(plus(B, A), C))
s2_in(plus(A, plus(B, C)), D) → U1(A, B, C, D, s2_in(plus(plus(A, B), C), D))
U1(A, B, C, D, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, C, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, Z, s2_out(X, A)) → U4(X, Y, Z, A, s2_in(Y, B))
U4(X, Y, Z, A, s2_out(Y, B)) → U5(X, Y, Z, s2_in(plus(A, B), Z))
U5(X, Y, Z, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
U41(X, Y, A, s2_out(Y, B)) → S2_IN(plus(A, B))
S2_IN(plus(X, Y)) → U31(X, Y, s2_in(X))
U31(X, Y, s2_out(X, A)) → U41(X, Y, A, s2_in(Y))
U31(X, Y, s2_out(X, A)) → S2_IN(Y)
S2_IN(plus(X, Y)) → S2_IN(X)
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, isNat_out(A)) → U7(A, B, isNat_in(B))
U7(A, B, isNat_out(B)) → U8(A, B, add_in(A, B))
add_in(0, X) → add_out(0, X, X)
add_in(s(X), Y) → U10(X, Y, add_in(X, Y))
U10(X, Y, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y)) → U3(X, Y, s2_in(X))
s2_in(plus(X, 0)) → s2_out(plus(X, 0), X)
s2_in(plus(A, B)) → U2(A, B, s2_in(plus(B, A)))
s2_in(plus(A, plus(B, C))) → U1(A, B, C, s2_in(plus(plus(A, B), C)))
U1(A, B, C, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, s2_out(X, A)) → U4(X, Y, A, s2_in(Y))
U4(X, Y, A, s2_out(Y, B)) → U5(X, Y, s2_in(plus(A, B)))
U5(X, Y, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
s2_in(x0)
isNat_in(x0)
U9(x0, x1)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0, x1, x2)
U8(x0, x1, x2)
U1(x0, x1, x2, x3)
U2(x0, x1, x2)
U3(x0, x1, x2)
U4(x0, x1, x2, x3)
U5(x0, x1, x2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U31(X, Y, s2_out(X, A)) → S2_IN(Y)
S2_IN(plus(X, Y)) → S2_IN(X)
Used ordering: Polynomial interpretation [25]:
U41(X, Y, A, s2_out(Y, B)) → S2_IN(plus(A, B))
S2_IN(plus(X, Y)) → U31(X, Y, s2_in(X))
U31(X, Y, s2_out(X, A)) → U41(X, Y, A, s2_in(Y))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
POL(0) = 0
POL(S2_IN(x1)) = x1
POL(U1(x1, x2, x3, x4)) = x4
POL(U10(x1, x2, x3)) = 0
POL(U2(x1, x2, x3)) = x3
POL(U3(x1, x2, x3)) = 1 + x2 + x3
POL(U31(x1, x2, x3)) = 1 + x2 + x3
POL(U4(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U41(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U5(x1, x2, x3)) = x3
POL(U6(x1, x2, x3)) = x2
POL(U7(x1, x2, x3)) = x2
POL(U8(x1, x2, x3)) = x3
POL(U9(x1, x2)) = 0
POL(add_in(x1, x2)) = x2
POL(add_out(x1, x2, x3)) = x3
POL(isNat_in(x1)) = 0
POL(isNat_out(x1)) = 0
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = 0
POL(s2_in(x1)) = x1
POL(s2_out(x1, x2)) = x2
U8(A, B, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(A, plus(B, C))) → U1(A, B, C, s2_in(plus(plus(A, B), C)))
U4(X, Y, A, s2_out(Y, B)) → U5(X, Y, s2_in(plus(A, B)))
U7(A, B, isNat_out(B)) → U8(A, B, add_in(A, B))
add_in(0, X) → add_out(0, X, X)
s2_in(plus(A, B)) → U2(A, B, s2_in(plus(B, A)))
U3(X, Y, s2_out(X, A)) → U4(X, Y, A, s2_in(Y))
s2_in(plus(X, 0)) → s2_out(plus(X, 0), X)
add_in(s(X), Y) → U10(X, Y, add_in(X, Y))
U5(X, Y, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
U2(A, B, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y)) → U3(X, Y, s2_in(X))
U10(X, Y, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U1(A, B, C, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U6(A, B, isNat_out(A)) → U7(A, B, isNat_in(B))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
U41(X, Y, A, s2_out(Y, B)) → S2_IN(plus(A, B))
S2_IN(plus(X, Y)) → U31(X, Y, s2_in(X))
U31(X, Y, s2_out(X, A)) → U41(X, Y, A, s2_in(Y))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, isNat_out(A)) → U7(A, B, isNat_in(B))
U7(A, B, isNat_out(B)) → U8(A, B, add_in(A, B))
add_in(0, X) → add_out(0, X, X)
add_in(s(X), Y) → U10(X, Y, add_in(X, Y))
U10(X, Y, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y)) → U3(X, Y, s2_in(X))
s2_in(plus(X, 0)) → s2_out(plus(X, 0), X)
s2_in(plus(A, B)) → U2(A, B, s2_in(plus(B, A)))
s2_in(plus(A, plus(B, C))) → U1(A, B, C, s2_in(plus(plus(A, B), C)))
U1(A, B, C, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, s2_out(X, A)) → U4(X, Y, A, s2_in(Y))
U4(X, Y, A, s2_out(Y, B)) → U5(X, Y, s2_in(plus(A, B)))
U5(X, Y, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
s2_in(x0)
isNat_in(x0)
U9(x0, x1)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0, x1, x2)
U8(x0, x1, x2)
U1(x0, x1, x2, x3)
U2(x0, x1, x2)
U3(x0, x1, x2)
U4(x0, x1, x2, x3)
U5(x0, x1, x2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U41(X, Y, A, s2_out(Y, B)) → S2_IN(plus(A, B))
S2_IN(plus(X, Y)) → U31(X, Y, s2_in(X))
Used ordering: Polynomial interpretation [25]:
U31(X, Y, s2_out(X, A)) → U41(X, Y, A, s2_in(Y))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
POL(0) = 1
POL(S2_IN(x1)) = x1
POL(U1(x1, x2, x3, x4)) = x4
POL(U10(x1, x2, x3)) = 0
POL(U2(x1, x2, x3)) = x3
POL(U3(x1, x2, x3)) = 1 + x2 + x3
POL(U31(x1, x2, x3)) = x2 + x3
POL(U4(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U41(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U5(x1, x2, x3)) = x3
POL(U6(x1, x2, x3)) = 1 + x1 + x2
POL(U7(x1, x2, x3)) = 1 + x1 + x2
POL(U8(x1, x2, x3)) = 1 + x1 + x3
POL(U9(x1, x2)) = 0
POL(add_in(x1, x2)) = x2
POL(add_out(x1, x2, x3)) = x3
POL(isNat_in(x1)) = 0
POL(isNat_out(x1)) = 0
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = 0
POL(s2_in(x1)) = x1
POL(s2_out(x1, x2)) = 1 + x2
U8(A, B, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(A, plus(B, C))) → U1(A, B, C, s2_in(plus(plus(A, B), C)))
U4(X, Y, A, s2_out(Y, B)) → U5(X, Y, s2_in(plus(A, B)))
U7(A, B, isNat_out(B)) → U8(A, B, add_in(A, B))
add_in(0, X) → add_out(0, X, X)
s2_in(plus(A, B)) → U2(A, B, s2_in(plus(B, A)))
U3(X, Y, s2_out(X, A)) → U4(X, Y, A, s2_in(Y))
s2_in(plus(X, 0)) → s2_out(plus(X, 0), X)
add_in(s(X), Y) → U10(X, Y, add_in(X, Y))
U5(X, Y, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
s2_in(plus(X, Y)) → U3(X, Y, s2_in(X))
U2(A, B, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U10(X, Y, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U1(A, B, C, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U6(A, B, isNat_out(A)) → U7(A, B, isNat_in(B))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
U31(X, Y, s2_out(X, A)) → U41(X, Y, A, s2_in(Y))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, isNat_out(A)) → U7(A, B, isNat_in(B))
U7(A, B, isNat_out(B)) → U8(A, B, add_in(A, B))
add_in(0, X) → add_out(0, X, X)
add_in(s(X), Y) → U10(X, Y, add_in(X, Y))
U10(X, Y, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y)) → U3(X, Y, s2_in(X))
s2_in(plus(X, 0)) → s2_out(plus(X, 0), X)
s2_in(plus(A, B)) → U2(A, B, s2_in(plus(B, A)))
s2_in(plus(A, plus(B, C))) → U1(A, B, C, s2_in(plus(plus(A, B), C)))
U1(A, B, C, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, s2_out(X, A)) → U4(X, Y, A, s2_in(Y))
U4(X, Y, A, s2_out(Y, B)) → U5(X, Y, s2_in(plus(A, B)))
U5(X, Y, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
s2_in(x0)
isNat_in(x0)
U9(x0, x1)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0, x1, x2)
U8(x0, x1, x2)
U1(x0, x1, x2, x3)
U2(x0, x1, x2)
U3(x0, x1, x2)
U4(x0, x1, x2, x3)
U5(x0, x1, x2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(plus(A, B)) → U6(A, B, isNat_in(A))
isNat_in(0) → isNat_out(0)
isNat_in(s(X)) → U9(X, isNat_in(X))
U9(X, isNat_out(X)) → isNat_out(s(X))
U6(A, B, isNat_out(A)) → U7(A, B, isNat_in(B))
U7(A, B, isNat_out(B)) → U8(A, B, add_in(A, B))
add_in(0, X) → add_out(0, X, X)
add_in(s(X), Y) → U10(X, Y, add_in(X, Y))
U10(X, Y, add_out(X, Y, Z)) → add_out(s(X), Y, s(Z))
U8(A, B, add_out(A, B, C)) → s2_out(plus(A, B), C)
s2_in(plus(X, Y)) → U3(X, Y, s2_in(X))
s2_in(plus(X, 0)) → s2_out(plus(X, 0), X)
s2_in(plus(A, B)) → U2(A, B, s2_in(plus(B, A)))
s2_in(plus(A, plus(B, C))) → U1(A, B, C, s2_in(plus(plus(A, B), C)))
U1(A, B, C, s2_out(plus(plus(A, B), C), D)) → s2_out(plus(A, plus(B, C)), D)
U2(A, B, s2_out(plus(B, A), C)) → s2_out(plus(A, B), C)
U3(X, Y, s2_out(X, A)) → U4(X, Y, A, s2_in(Y))
U4(X, Y, A, s2_out(Y, B)) → U5(X, Y, s2_in(plus(A, B)))
U5(X, Y, s2_out(plus(A, B), Z)) → s2_out(plus(X, Y), Z)
s2_in(x0)
isNat_in(x0)
U9(x0, x1)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0, x1, x2)
U8(x0, x1, x2)
U1(x0, x1, x2, x3)
U2(x0, x1, x2)
U3(x0, x1, x2)
U4(x0, x1, x2, x3)
U5(x0, x1, x2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
s2_in(x0)
isNat_in(x0)
U9(x0, x1)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0, x1, x2)
U8(x0, x1, x2)
U1(x0, x1, x2, x3)
U2(x0, x1, x2)
U3(x0, x1, x2)
U4(x0, x1, x2, x3)
U5(x0, x1, x2)
s2_in(x0)
isNat_in(x0)
U9(x0, x1)
U6(x0, x1, x2)
U7(x0, x1, x2)
add_in(x0, x1)
U10(x0, x1, x2)
U8(x0, x1, x2)
U1(x0, x1, x2, x3)
U2(x0, x1, x2)
U3(x0, x1, x2)
U4(x0, x1, x2, x3)
U5(x0, x1, x2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))
S2_IN(plus(A, plus(B, C))) → S2_IN(plus(plus(A, B), C))
S2_IN(plus(A, B)) → S2_IN(plus(B, A))